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1. . 

A METHOD OF ANALYSISFOR LENS AND MIRROR SYSTEMS - 

- Imz R. J. Davis', S. E. StromZ, and K. M. Strom3 

The Smithwnian Astrophysical observatory is participating in the Orbiting Astronomical 
Observatories progmm of the National Aeronautics and Space Administration to develop an optical- 
electronic system that will combine wide-band television with photometry and slitless spectroscopy 
in making a survey of the sky between loo0 and 3OOO angstroms. 

The system is basically a television telescope. The detector will be a modification of a 
Westinghouse ebicon tube for use in the ultmviolet. A photoemissive substance is deposited on the 
inside of the faceplate, which must be a lens transparent to  the ultraviolet wavelength being studied. 
Photoelectrons from this surface are accelerated through 15 or 20 kilovolts and imaged upon the 
target electrode, in which the electron bombardment induces conductivity. The electroconductive 
image can then be read off the target by the usual vidicon technique. The resolution, which is 
determined by the limitations of beam-scanning techniques, is at present limited to about 100 
microns throughout an area of 2.5 centimeters square on the photocathode. 

The design of such a telescope involves the evaluation of various optical dedgns. It must be 
mechanically simple if it is to opcmte properly after being subjected to the roclrct and space envimn- 
ment. It must consist entirely of reflection optia,  except for the television faceplate itself and 
possibly a small optical filter in front of it. 

We have developed a my-trueing program for the IBM-704 electronic computer to evaluate 
various systems that have been proposed to meet our requirements. Because these techniques have 
more general applicability, we are reporting them here for the benefit of &err who may wish to 
use them. 

'Astrophysicist, Project Celescopc, Smithwnian Astrophysical Observatory. 

*Computer, Project Celescope, Smithsonian Astrophysical Observatory. 

3Massachusetts Institute of Technology (on leave of absence). 
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General Method 

The geneml vector equation for refraction and reflection at an optical surface is: 

. 
The following conventions hold: 

4 I is the unit vector along the incident r a ~  L= A i  + BJ, + Ck, where A, B, and 
C are the direction cosines of the incident ray. This vector must be normalized, i. e. , 
A2 + B2 + C2 = 1. 

is the vector along the normal to  the optical surface under consideration; this 
my need not be normalized since it appears 0x1 both sides of the equation, 8 = Pxi 
+ Pyi + Pk, where P,., P , and Pz are the partial derivatives of the function represent- 
ing the optical surface @[XI y, z) = q.  

n is the ratio of the index of refraction of the second medium to that of the 
first; for reflection, n = -1. 

R is a unit vector along the reflected (or refracted) ray; E = RL + S j  + Tk_, 
.L where S, and T are the direction cosines of the my. 

The equation to be solved is then: 

Or, when we equate the components, the equation takes the form: 

7 - CPy = n( SP, - TPy) 

- CP, = n(RP, - TPd 

- BP, = n(RPy - SP,J 

(3) 

Since equations (3) are not linearly independent, the other condition necessary both physically and 
mathematically to obtain a unique solution is: 

( 4) R2 + S2 + T2 = 1. 
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where ( xo, yo, zo) is any point on the incident my. 

We then evaluate the partial derivatives of the surface at the points of inteaection, and carry 
out the solution for the values of R, S, and T that correspond to each set of A, B, and C. These 
values of R, S, and T can then be used as the directiun cosines of the mys incident upon a second 
surface. Thus, the R, S, and T that have been calculated become analogous to the original A, B, 
and C. The mys are tmced through the system in this manner until their intersections with the final 
optical focal surface have been calculated. Knowing these intersections, we can calculate both the 
size and the shape of the image if the incident mys are appropriately chosen and if their number is 
great enough. 

All signs of the square roots involved in this solution are determined by the physical solution 
desired. 

The Case of the Off-axis Paraboloid 

One of the optical systems we have considered in our design of telescopes to be used in the 
Orbiting Astronomical Observatories program is the off-axis pamboloid. Such an instrument is 
illustrated in Figure 3. 

The equation of the surface to be considered here is: 

.2 + y2 = 4h, ( 9 )  

where f is the focal length of the pamboloid. The incident mys are given by: 

.u I = ( s i n y  c ~ ~ ~ ) ~ + ( s i n y s i n a ) ~ + ( c ~ ~ y ) & ,  (10) 

where y is the angle the my makes with the z-axis, and a is the angle the my makes with the x-axis, 
both angles being measured according to  the conventions in Figure 4. These components satisfy the 
normalization condition. The equation of the normal is: 

. 

. 
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The optical system is set up in a rectangular coordinate system (x, y ,  t ) ,  with the first surface 
placed at the origin. Further surfaces are first written in convenient rectangular coordinate systems 
(x", y", 2"). This is shown in Figure 1. In order to obtain a solution, we use the following transforma- 
tion equations: 

for translation, where ( x i ,  y1 I 21) is the position of the surface with respect to the origin of the 
coordinate system (x, y, z); the matrix equation: 

is ured for rotation. The angle convention is given in equations (7): 

cos ai = cos (LX'fOXf) 

cos 8, = COS (LX'IOY') 

cos y = cos (LXl 'OZ')  

cos a2 = cos (LYIIOXI) 
etc. 

Figure 2 gives the definitions of the angles on the right-hand side of equations (7). We then substitute 
the transformation equations (5) and ( 6 )  into the equations of the surfaces P( XI*, y", t"). Thus we obtain 
the equations of the surfaces with respect to the origin of our original coordinate system (x, y, 2 ) .  

Since the above matrix is orthogonal, the inverse transformations are easily obtained, the 
inverse matrix being equal to the transform of the matrix. Primes are used to represent trunslated 
coordinate systems, and double primes to represent tmnslated and rotated coordinate systems. 

In order to truce a my through an optical system, we must have, for the surfaces involved, 
continuous equations (although the functions need not be single-valued) and continuous partial deri- 
vatives. This condition should not eliminate any optical systems that we may wish to study, We 
determine the equations of the original incident rays by the physical situation desired; e. g., the 
angles of incidence of the rays. Then we obtain the intersections of these rays with the first optical 
surface by solving equation (8), the parametric equations of the incident rays, simultaneously with 
the equation of the surface: 
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The relative index of refraction, n, is -1. The vector equation to be solved is then: 

Y i 4 1 U k i J 3  
riny cosa s i n y t i n a  cosy = 2x zy - 4 f ,  

2x 2v -4f R S T  

where x and y are the points of intersection of the rays with the mirror. Since our system is Q telescope, 
we can arbitrarily pick the points on the mirror to represent, for example, the extreme myr in the 
system. Equation 12 gives: 

2f riny t ina + y cosy = -(ZS + yT) (13) 

or 

or 

- xlT + COSY\ + 2ff inv m a  

and 

T2 = 1 - 1 Ex2 + y2)(T + cos Y ) ~  + 4f2 sin2 y + 4f sin y ( T  + cos y)(x cos a + y sin 4 (15) 
4f2 

or 
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After obtaining T from this equation, we can readily solve for R and S. The reflected my is 
then determined by its direction cosines and the point (x, y, Z) on the mirror at which it was reflected. 

For our own purposes, we place the faceplate of our television camem at the focus of this 
system. We wil l  consider the reflected mys from the mirror to be the mys incident upon the front 
surface of the faceplate. The case of a double concave faceplate will be considered. Both surfaces 
of the faceplate are spherical, and its thickness at the center is t. 

h this coordinate system, (x", y", z"), the equation of the first surface is: 

The equation of the second surface is: 

We first translate these equations along the z-axis to a point, 2:. Equations (16) and (17) then become: 

xI2 + yI2 + - (z: + R1 + R2 + tg2 = R: . 

Since the section of the pamboloid under consideration is not symmetrical with respect to the 
z-axis,  we must also rotate the coordinate system at an angle 6 in order to obtain the best focus. 
This angle is found by rotating the system back and forth in finite steps about an appropriately chosen 
initial angle until the best %pot sire" is obtained over the entire field. The romtion is performed 
about the x-axis; therefore, x = XI . The resulting matrix equation is: 

0 

where the unprimed coordinates are in the system in which the equation of the pamboloid was written, 

The final equations of the faceplate surface are: 
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or 

2 2 2  2 x + y2 + z + z.,, + 2z,,(ysin6 - 2-6) = R1, 

2 2 x + y2 + z2 + k2 + 2k(y sin 6 - z cos 6) = Rg , 

where 

The intersections of the my reflected from the mirror and the f i n t  surface of the faceplate are 
obtained, and then the direction cosines of the reflected ray are found. The index of refraction of the 
faceplate must be used in this solution. The equations of the my incident upon the second surface con 
be obtained from the direction cosines, and the inkncctianr of the rays with the first surface. The 
final solution of the problem is the determination of the int.ncctions of the myr with the ncand surface 
of the faceplate, since this represents phydcully the photoemicsivc surface of an ebicon television image 
tube. 

Seveml squm roots are involved in this solution. We chose their signs to give the physically 
correct answeq i. e., intersections with the equation within the mnge of values that actually represene 
the optical surface, 

We have employed this method with the W-704  at the Computations and Analysis Dividan 
of the Smithsonian Astrophysical Observatory. Far each angle of incidence we tmced five mys through 
the system, one my striking the center of the mirror and four at the edges, 900 apart (fig. 5). The 
computed spots were compared with the photographr taken with a plane image curface in our optics 
laboratory. We found that these rays gave both the size and shape of the image quite accurately. With 
a greater number of rays, we am deternine an approximate intensity distribution within the image. 
After determining the angle 6, we found the best foau  by moving the faceplate both toward and away 
from the mirror until the best possible spot size was obtained aver the entire field. 

We have used this same method to evaluate a Schwaxnchild telercope system, a two-mirror 
system in which both reflecting surfaces are aspheric. We hove also considered a spherical mirror used 
at grazing incidence, and a similar mirror for which a cubic correction factor had been introduced. 
These mirrors used at gmzing incidence fonn the basic components of an x-my telescope or micro- 
scope system. 

* 
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FIGURE 1. --Coordinate systems for (a  set of) two optical surfaces. 

X" 
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FIGURE 2. -- Geometrical illustmtion of the 
angles defined in equation (7) .  



FIGURE 3. --Use of the off-axis pambaloid for a 
televiskm telescope. 

FIGURE 4. --Direction conventions for rotation of 
coordinate sy-stem. 
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FIGURE 5. -- Nomenclature for numbering of rays. 
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A DETERMINATION OF THE ELLIPTICITY OF THE EARTH'S EQUAToR 

FROM THE MO'IION OF TWO SATELLITES 

Abstmct --The effect of the mort important longitude-dcpendent term of the 
geopotential on the motion of asificial 8atelliter ir exprered by simple formula. 
Its numerical coefficient $ can be interpreted as the ellipticity p f  ole earth'r 
equator, the phose constant h 
major a i s .  Based on photorefuced Baker-Nunn obrervationr of the mtellites 
1959 a 1  and 1959 Etu the valuer of these constants were determined to  be 

giver the geogmphicd longitude of the umi -  

B =  (3.21 2 .a) x and $ = -33% +?53 . 

Introduction 

The primary mission of Satellite 1959 a1 (Vanguard 11) was to scan the earth's cloud cover, 
and that of 1959 Eta (Vanguard 111) to measure the earth's magnetic field. These experiments, however, 
could be conducted only for a limited period, as the tmnsmitter of Vanguard II ceased operating 27 
days after launching, and that of Vanguard III 85 days after launching. Since then the Smithsonian 
Astrophysical Observatoxy has had the responsibility for tmcking both objects, and has obtained many 
thousands of optical observations of them by means of the Baker-Nunn camera stations and the voluntary 
Moonwatch teams. Because of their high quality, these observations became iery valuable for different 
research projects, such as the study of the upper atmosphere, the determination of the earth's gmvita- 
tional field, and other investigations now under way. For our present purpose, the determination of the 
coefficient and phase of the first longitude-dependent spherical harmonic in the geopotential, only the 
most accumte observations can be used. These are withaut question the positions obtained by the Photo- 
reduction Section, at the Cambridge headquarters of the Smithsonian Actrophyrical Observatory, from the 
Baker-Nunn photographs. For simplicity, we call these positions photoreduced observations as opposed 
to the field-reduced observatians, the latter are the less accumte positions determined in the field, i. e., 
at any one of the 12 Baker-Nunn camem stations, immediately after a pass of the satellite Over the station. 

-~ ~ 

'Astronomer, Smithsonian Astrophysical Obsenratory 
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The Geometrical Interpretation of the Geopotential 

For easy reference we collect first some well known formulas related to the development of 
the geopotential of a rotating rigid body into a series of spherical harmonics. (According to the conven- 
tion in theoretical physics, we are dealing here with a force function, which is the negative of potential 
energy 1 

Let X, Y, 2 be the coordinate system of the principal axes of inertia with the origin at the 
C the moments of inertia about these axes. Then the gmvitational potential center of mass; and A 6 B 

of the body c ~ l l  be written in the form 

where P= fme is the product of the constant of gravitation and the mass of the earth, 

and 

I = \ (AX2 + BY2 + CZ2) 

is the moment of inertia about the line joining the center of mass to the point considered. 
is sometimes referred to as MacCullagh's formula (Jeffreys, 1959). 

Expression (1) 

Let us introduce spherical harmonics in the usual way by the relations 

where 4 denotes the latitude; and A the longitude reckoned from the principal axis X; 
Pz( sin 4 ) is a Legendre polynomial; and 
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The polynomial (2) is called a zonal solid spherical harmonic; the polynomial (3), on the other hand, 
is called a sectorial solid spherical hpnnmic. Using the notations 

Becnurc all gmvity measurementt are made with respect to a fmme rotating with the aarch, 
the geopotential Y fi the cum of the g m v i m t i d  parartid U and thc potential of the centrifugal force! 
tlmt is, 

when $ is  the angular velocity of the earth's rotation. 

To express the constants Jz and by geometrical quantities related to the shape of the 
earth, and by a quantity related to (I, we assum?! tlmt the surface of the eaxth is very nearly an equi- 
potential surface of the geopotential Y. This hypothesis of €~~tydrodotic equilibrium bu certain amno- 
gonical conrequencm. It must be kept in mind, however, that even in the C(W of the earth, it gives 
only a good approximation to the real situation; and in the case of the moon it fails completely. Be 
that as it may, we suppose that 

on the surface of a triaxial e l l i p i d ,  which deviates but slightly fwm a sphere; that surface will be 
considered OS the mean surface of the eurth. In the equation 

of this geoid, we put 
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and cpll 6 the ellipticity of the earth’s equator, and y the oblateness of the earth. Also, we introduce 
the small dimensionless quantity 

a=& , 

&e mtio of the squares of the earth’s angular velocity and the Keplerian mean motion of a 

e’ 

From equations ( 7 )  and (8 )  it follows that to the f i n t  order in the small quantities 0 and y 

fictitious satellite with semimajor axis a = a 

We will need the expansion of ae/r on the surface of the geoid in spherical harmonics. 

+ z2 = 1 - 2y ; 
x! Y2 

( 1  - 2y) + (1 - 2y + 20) - 
e “e2 

hence 

-- “ - ( I  + y )  -y(x2.+6? 
2 ‘  “c2 Qe r 

But as a conaequence of equationa ( 2)  and (3  ) we have 

(9) 

so that expressed in sphericnl harmonics 

Then a cornparisan of equations (4), (S), ( 9 ) ,  and (11) shows that on the surface of the geoid 

again to the first order in the small quantities 0 ,  8, 7 . Because the development of a function of the 
angles 4 and h into a series of spherical surface harmonics is unique, the condition (6) amounts to 
the validity of the relations 
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among the coefficients J and J (2) on the one fmnd, and the ccmstnntsu, 6, 7 on the other. 
2 2 

Geodesists are usually concerned with the gravity, g, which is the absolute value of the 
gmdient p 1. Neglecting quantities of the second order in a, 5, and 7 ,  one first obtuinn 

On the surface of the earth, this expression becomes 

with 

when use is made of relatiaar (12) 

The value of the constant u cun be d e t e n p d  with high accumcy. A sidereal day 
 KC^. Then, adopting from O'KeCfe, eqwlr 86164.10 seconds; therefore, $ = 7.292ll5 x 10 

Eckels and Squires (1959) the value 

p = 3.98618 x 10 5 3  km ~ c c ' ~  

and the value 

ae = 6.378388 x m3km 
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of the international ellipsoid, we obtain from relation (9 )  

-3 a = 3.46165 x 10 . 
The most accurate value of the coefficient J2 is probably that of K d  (l961), who has 

found that 

= (1.08219 2 .oooO2) x . (14) J2 

To take ful l  advantagt of his determination% accumcy, we must consider the second-order expression of 
J2, instead of the relation given by the first equation in (12). Such an expression a n  be derived by a 
straight-forward, though more laborious extension of the argument that led to relations (12). The result is 

Here in the second-order terms it is sufficient to use for the constant y an approximate value, 

1/298.3 = 3.352 x l o3 ,  which together with the above value of a gives 

- ( a  + Q +  1.225 x 10-6 . 2v 
3 J2 = 

The determination of the oblateness y from the coefficient J2 is sensibly affected by the value of the 
ellipticity B, as shown in the following tabla 

when B then y 

0 3.35227 x = l/298.305 
2 3.36227 x = 1/297.418 
4 x 3.37227 x = 1/296.536 
6 x  lo5 3.38227 x = 1/295.659 . 

The data on the ellipticity of the equator are mther contradictory in the literature. They were determined 
by analyzing the measures of gmvity over extended areas of the earth, and seem to be influenced rignifi- 
cantly by the distribution of the o b s e n r a t i d  material. For instance, from the txeatise of Heiskanen and 
Meinesz (l958) we list these dam 

B AX 

Helmert, 1915 3.6 x lo5 -170 
Heiskanen, 1924 5.4 x 10: +18O 

Uotila, 1957 2.1 x 10 -6O, 

Heiskanen, 1928 3.8 x 10 O0 
Niskanen, 1945 4.6 10-5 - 40 
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where h 
X w e b v e  

is the geographic longitude of the direction of the principal axis X, so that for any longitude 

Accding to Jeffreys (1959), however, 

6 = (2.5 5 . 9 )  x 10” , A = Oo . 
In his textbook on celestial mecknics, Subbotin (1949) adopted the value 

-5 6 = 1/30000 = 3.3 x 10 . 

In his detailed study, J0ngOk~iCh (1957) derives the equivalent of the values 

4 0 = 3.57 x 10 , Ax = - 7 9 .  

From a =cent paper by Kaula (l959 ) one mn infer the values 

6 = 3.67 x l o4 ,  1, * - z 6 1 8 ,  

The Wect  of the Ellipticity of the Eprth’r Equator on the Motion of Satellites. 

Several investigators have pointed out that the ellipticity of the eurth’r equator might have 
a detectable effect on the moCion of artificial ratellites, and therefore a careful analysis of accunate 
satellite observations could lend itself to a better determination of the conrbonfs 0 a d  hx . this 
connection let us refer to the papers by O’Keefe and Batchlor (1957); Robe (1959 ); Cook (l960); 
Sehnal(1960); and Musen(1960). 

To derive the perturbatiam caused by the presence of the sectorial harmonic in question, 
we am confine ourselves to a very simple theory. The disturbing function, which is 

must fimt be transformed into a function of the orbital elements a or n, e, I, M, a, and n of the 
satellite. Let 

v = the true anomaly, 
u = v +u, the argument of latitude, 
w= the pmjection of u on the equator, that is the longitude of the satellite reckoned 

from the ascending node of its orbit, 

-17- 



BC and 8 = the mean sidereal time at Greenwich and at the intersection of the principal 
axis x with the surface of the earth. 

Note that 

~~~ 

and 

1, =e, - e,. 

The angles @, w are related to the angles I, u by the formula 

cot @ c a w  = c a u  

and 

cxm 4 sinw = cos1 sinu , 

in accordance with spherid Mgonome&y. There equations can be written in the complex form 

cos # exp(iw) = cos u + i cos I: tin u = cos21 exp(iu) + sin2; exp (-iu) , z 

which immediately yields 

But 

2 cos @cos2h= Re{[cos#exp(iA)]2) , 

so that introducing the abbreviations 

c = cos I, a =  sin I, n2 = E 
a3 

-18- 



we obtain the disturbing function in the form 

e n d  formulas for the disturbing function of any terreml harmonic can be found in a papu by Cwves (Sa). 

In our problem it i s  not necessary to carry out the development of this functian into a Fourier 
series in terms of the mean anomdy M, because the contribution of the short-periodic terms to the per- 
turbations turns out to be negligibly small. As the Fourier series of the functions 

do not contain constunt tenns, and the constant term 

the fllong-pel.iodicff part of R becomes simply 

The perturbations couKdby the oblateness ofthe trvth c c m c ~ u  hert cmlytotheucknt thotn isnot 
castant, but m t h r  a linear function of time 

Q-nEe&-no+(e, -nl)(t-to) . 
Substituting function (16) into the differential equations of the orbital elements (see, for 

example, Moulton (l959)) and integmting with respect to time, we obtain at once 
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The semimajor axis a and the eccentricity e do not undergo long-periodic perturbations due to the 
ellipticity of the equator, The question now ir how to use there formula for the determination of the 
caprtant 8, and whether the accumcy of the observations made with the Baker-Nunn cumem is 
ntfficient for such a detmnination. 

Tha Computation of tha Constana 8 and 

In the Differential Orbit Improvement proSmm of the Smithsonian Astrophysical Observatory 
developed for the IBM-704 computer by C. Veis and Ch. H. MOore, the orbital elemmtra, 0 ,  I, e, M 
can be represented as polynomiab up to the 7th degree, plus sine-tern and exponential functions of the 
time t. As many CUI 23 of the data figuring in such a representation can be varied in an iterative least- 
squares solution, but we usually limit ourselves to much less unknown in order to obtain meaningful results, 
It takes some experience to decide properly which quantities should be varied in a particular application, 

The numerical material for the present investigation was obtained in December, 1960 by 
seveml consecutive mns of this program, as applied to 187 photoreduced Baker-Nunn observations of 
Satellite I959 a 1 covering the interval April 6 through 25, 1960; and to 216 observations of Satellite 
I959 Eta  covering the interval May 8 through 27, 1960. The use of two satellites is not a theoretical 
necessity, but a precautionary measure in order to give two independent determinations of the constants 
in question. While it is not possible here to furnish all the details of these orbit computations, their 
important features can be summarized as follows. Because the phase at which the trigonometric terms (18) 
are Itobservedtf at a particular station varies only slightly from day to day, it is desirable to use a long 
interval of time for the computation of the constants 6 and Ax. However, even in the case of such 
relatively high orbiting satellites as I959 a 1 and 1959 Eta, the effect of the air dmg cannot be described 
with sufficient accumcy in too long an interval of time by simple polynomial expressions. As a compromise, 
some n u m e r i d  experimentation led to the 20-day intervals noted above, with third-degree polynomials 
in the mean anomaly M. The best possible polynomial representation of all the orbital elements was 
determined, treating W andn as polynomials of the second degree, I and e as polynomials of the first 
degree, and M as a polynomial of the third degree. This means that the long-range direct and indirect 
effects of the air drug, of the radiation pressure, of secular and long-periodic perturbations due to the 
even and odd zonal harmonics in the earth's gravitational potential, and of luni-solar perturbations were 
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tmatod in an empirid ~ a y .  Analytial e x m i o n r  for the first-order rhortgtriodic prtaubatioxm due 
to the oblateaesa of the earth are incorporated in the computer program. The cafficients of these 
polynomials were improved by including the trigonometric terms (18) into the orbital elements with 
the consttua 

-5 
8 = 3 . 8 ~ 1 0  and Ax=Oo 

of Heiskanen. In seveml~conrccutive run8 these constants were then treated as unknowns only in the right 
asamion of thc noden, because onc would expect no shofi-periodic air drag effectr in this h i m l  
element, and bemusethe amplitude of 6n turned out to be the biggest one. The imprwed valuw ob 
B a a d ~ ~ m r c r u b r t i t u t r d i n t o 6 ~ ~  m , 6 1 ,  6M, and-thenthe compumtionoftheseconstmtswas 
repeated until the new values agreed with the old ones within their sinndaxd um~11. 

Here are the relevant rcIultl of these compumtiom 

satellite 

I959 a1 1959 Em 

April 16.0, 1960 Mayl9.0, 1960 

aOr?1383 236- e, 
81 

"0 

"I 

1.002738 m/day 

l38h99 lSs?l3lZ 

-3?5'51067/&y -3?27567/dcry 

n ll.463937 rev/* 11.069014 m/day 

a 

e 

1.302343 at 

0.1646379 

q = a(l-e)+ae 561 km 

I 328796 

1.333153 (h 

0.1891083 

517 km 

33?3569 . 

Consequently, utprcrricpt (18) become 

6 0  -8 x 0.- rin2(eX -Q) -8 0.- sin2(eX -Q 
6Q 5 1.4808 tin2(ex -n) 5 1.3824 sin2(eX -n) 
6 1  8 x 0.9572 COI 2(ex - Q ) 0 x 0.9100 ca2(ex -Q) 

6hi 0 0.7688 sin 2(ex -n 0 x 0.7370 ~in2(eX -n) . 
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In the course of the trigonometric lea-quare8 f i t  to the observationa, the IBM-704 electronic computer 
actually obtained the amplitude of 6Q and twice the phase angle ex, - Q = X 
thee dam we immediately obtain 

+ (eGo - Q 1. From 

6 (3.47 2 .  28) (2.88 2 .32) x lo-' 

AX 33% 5 1:s -32';'3 2 3 9  . 
The agreement between the two aeta of data aeemr rearonablq mking the weighted mean valuu, we 
obtain 

and 

Ax f -33% 2 ?53 . 
This numerial value of the ellipticity gives the p e w t i o n  6~ , . . . exprtaaed in radiana. For the 
use of other angular unita we note tbot 

According to definition (8)  of the quantity 0, the difference between the axe8  ae and b ir 205 m; a a 
conraquma of eqpation (lS), tha oblatener becomer 8 

y = 3.36832 x loJ - l/296.884, 

Needlua to my, tbr above drtrnnination ir far from being a fiaal one. It will be im- 
proved QI mon aa mom accuratm coordinatu of the Baker-Nu camem atationa an available, 
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EFFECTS OF SOUR RADIATION PRESSURE ON THE MOTION 

OF AN ARTIFICIAL SATELLITE 

The effects of solar radiation pressure on the motion of an artificial satellite have been studied 
by several authors (Musen, 1960; Parkinson, Jones, and Shapiro, 1960). As they predicted, the orbit 
of Satellite 1960 L 1 (Echo r) has been greatly affected by the solar radiation pnrmn (Shapiro and 
Jones, 1960). And even for Satellite 1958 82 (Vanguard I), which is of modemte size, M w n ,  
Bryant, and Bailie (1960) found that the discrepancy between the observed and computed values of 
perigee height could be explained by the solar radiation effect. 

When the author (I(&, l959; 1961) derived seveml constants of the earth's gmvi ta t iod  poten- 
tial from the motion of artificial satellites, he did not take t h i s  effect into conridemtion. Although 
the effect is very small for the avemgc satellite, it must be considered in the future in the reduction 
of observations. 

In the present paper the author wants to study this problem in order to reduce the observations of 
satellites of modemte size. The analytical urpressions for the perturbations of the first order are ccuily 
obtained; however, the two limits of integration are derived by numerical methods. 

'Astronomer, Satellite Tracking Progmm, Smithronian Astrophysical Observatory. 
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Disturbinq Functions 

The equations of variations to be solved are the following: 

2 -- di - IIQ WF:COSL, 

dt 4 -  

where the conventional notations are used for the orbital elements, 

L = v + W ,  

p = a( i  - e2);  

n2a3FS(v), n2a3FT(v), and n2a3FW am three components of the disturbing force due to the solar 
mdiation pressure in the direction of the mdius vector of the satellite, in the direction perpendicular 
to it in the orbital plane, and in the normal to the orbital plane; and F is a product of the mass area 
ratio, solar mdiation pressure, and a reciprocal of CM. 

To derive the expressions of S(v), T(v), and W, we make the following assumptions: 

1) The distance of the sun and the satellite is infinite; that is, the parallax of the sun is 
negligible. 

2) The solar flux is constant along the orbit of the satellite if there is no shadow. 
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3) There is no re-mdiation from the surface of the earth. 

Then the expressions are the following : 

S(v) = - c o r 2 ~ c o s 2 ~ c o s ( A o  - L - G) 

i i sin E cos(% - 1.1 -  cos(-^, - ~g - - s i n  1 
2 

- cos i sin E sin Ae , 

where Ae i s  the longitude of the sun, and E is the obliquity. The expression of T(v) is obtained if  
cos in S(v) is replaced by sin except for the trigonometrical terms with an argument i, E, 1/2, or 
€12. 

Solutions 

There is a very important difference between the solar mdiation force and the gravitational force. 
The solar dation fmce is sometimes a discontinuous function of time bewuse when the satellite enters 
the shadow, its motion i s  free from this effect. 

Suppose that the satellite exits from the shadow at a point where the corresponding eccentric 
anomaly of the satellite is Q, and enters the shadow at E2. If the force is continuous, the integml of 
the short-periodic effect can be neglected. However, for this case there is a possibility tbat this effect 
will be cumulative to a certain amount during a long interval of time. Therefore, the short-periodic 
terms must be kept in the solutions. 

By use of the eccentric anomaly E as the independent variable, the perturbations of the fist 
order after one revolution can be &rived in closed forms a follows: 
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E2 

El 
6a = 2a3F (S cos E + T a sin E)l J I 

E2 

E1 
+ T(-2e sin E + i s i n  ZdI 

4 

2 

I E 2  - fi ( c o r E  - zcos 2E) cos 03 
E l  

4 
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- 2 u f D S { ( l  + e2) sin E - as in  2Ej 

e E2 

E1 
- T 4- (cos E - ;r cos 2E) I 

where the limits of integration are El and E2 unless other values are written; S and T are the expredms 
of S(v) and T(v), in which L is replaced byo); that is, 

s = S ( 0 )  , 

T = T(0) .  
(4) 

If the satellite doer not enter the shadow during one revoluti011, the terms depending explicitly 011 

E vanish, and in paxticular, 6a vanishes. 

. 
0 must be considered as follows: 

In the expressions of &u and 60, indirect effects of the solar mdiation pnrntn through 0 and 

. 
dt de da 

Shadow Equation 

If the geocentric angular distance between the sun and the satellite be denoted by a, the shadow 
boundary is expressed by the equation, 

r s i n a  = a., 
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A 

where a. is the radius of the earth and is assumed to be constant. The following relations hold among 
r/a, E, S, T and a :  

f,= 1 - e c o s E .  
a 

I f a ,  Q, and X, are assumed to be constant during one revolution of the satellite, S, T and e can also 
be regarded as corurtant; then E can be derived from equation (6). 

However, as the equation is of the fourth degree with respect to sin E or coa E, it is very difficult 
to get geneml analytical solutions except for a circular orbit. If the orbit i a  circular, the terms of odd 
powers of tin E or cos E disappear, and the equation becomes quadratic for cos2 E or sin2 E. And it is 
almost impomible to expand the solutions into power series of the eccentricity because of slow conver- 
gency. Even if the series is convergent, it ia poasible that the equation h a  no real root even though the 
equation has two real mota for the circular orbit, and vice versa. 

Therefore, the author thinks that equation (7) must be solved numerically for every revolution, 
There are four root& however, under a condition that cos a must be negative, the number reduces to 
two, at most. If there is no real mot, the satellite does not enter the shadow. And if there is only one 
real root, the satellite touches the shadow at one point. 

Numerical Examule: 

The author has devised a program to calculate these effects on the IBM-704 computer. This 
program computes the inequalities of the orbital elements due to the solar radiation pressure, if the 
approximate expressions of the orbital elements are known. 

As an example, inequalities of the orbital elements for Satellite 1958 82 during the period 
36526-36615 (Modified Julian Days are plotted in Figure 1. This computation is based on an estimated 

pressed in earth equatorial radii, and the mean anomaly is in revolutions. The author (Kozai, 1961) 
used earlier the same observations to derive geodetic constantq the effect of the solar radiation pressure 
was partly taken into account in that reduction. 

acceleration of 9.7 x 10-6 cm/sec 1 (Musen, Bryant, and Bailie, 1960). The semimajor axis is ex- 

The perturbations for Satellite 1960 t.1 have been roughly computed by this program, and have 
teen checked with observed values. As the eccentricity is small (order of 
argument of perigee is very rapid due to the solar radiation. For this case it is better to use 

the change of the 

instead of e and a. 
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The following expressions are derived under an assumption that the satellite never enters the 
shadow, and they are compared with observations in Figure 2: 

5 = 5 '  + 0.00066 

5 '  = 0.04409 sin(91t99 + 2?965t) 

+ 0.03579sin(b -n) + 0.00188sin(b + Q )  

- 0.00519 sin & , 
'1 = 0.04409 cos(91099 + 20965t) 

+ 0.03373  COS(^ - n) - 0.00200 COS(& +P) 

- 0.00169 COS & , 

where 0.00066 in 6 appears because of the odd harmonic of the earth's potential, 0.04409 is the so- 
called proper eccentricity, and other terms are due to the solar radiation pressure. The time t is 
measured from 37171.0 (MJD) in days. The proper eccentricity and the phase angle 91099 are 
determined from observations by the method of least squares. The acceleration is also determined 
to be (4.470 0.024) x 

Although the satellite entered the shadow after 37171 (MJD), the above expressions can follow 
the actual variations quite well. 
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FIGURE 1. --Inequalities of the orbital elements due to  the solar mdiation premn for 1958 62. 
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FIGURE 2. --Variations of 5’ and 7 for 1960 tl with observed values represented by dots. Epochs are 
given in 37100 (MJD). 
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Errata f o r  SA0 Special Report No.  53 

The first equation on page 2 should read 

nJ ( 2  - p 5 2  s i n  i), and 2 2 2  w =  
a ( 1 - e )  

Line 15 on page 9 should read 
n convenient t o  pr int  p instead of 1; i n  the resul ts  of SA0 mean elements. 

Lines 10 through 12 on page 11 should read 
a 

siQ@ gives the e I n  figures 5 and 10, the curve f o r  c = - 
297 

given. 
correction needed t o  derive t rue  a l t i tude  z = q - ae + c, of the 

perigee over the international ell ipsoid,  where ae i s  ear th 's  
equatorial radius and 

Column headings on pages 13 through 19 and pages 25 through 31 should read 

w i e M n nt/2 q N D u T 
(MJD) 

~ 
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-This series of Special Reports was inst i tuted under the 
supervision of Dr.  F. L. Whipple, Mrector of the Astrophysical 
Observatory of the Smithsonian Insti tution, short ly  a f t e r  the 
launching of the f i rs t  a r t i f i c i a l  earth satellite on October 4, 
1957. 
F i r s t  issued t o  ensure the immediate dissemination of data f o r  
s a t e l l i t e  tracking, the Reports have continued t o  provide a 
rapid distribution of catalogues of s a t e l l i t e  observatione, 
o rb i ta l  infomation, and preliminary results of data analyses 
prior  t o  formal publication in the appropriate journals. 

Contr5butions cane fran the Staff of the Observatory. 

Edited and produced under the supervision of Mrs. L. G. 
Boyd and Mr. E. N. Hayes, the Reports are indexed by the Science 
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U.S. space research program and t o  individual scient is ts  who 
request them from the Administrative Officer, Technical Infor- 
mation, Smithsonian Astrophysical Observatory, Cambridge 38, 
Massachusetts. 
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